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For the sake of simplicity, we represent a Fuchsian system of the form

dY

dx
=

(
A1

x − t1
+ · · · +

Ap

x − tp

)
Y (m × m)

as A = (A1, . . . , Ap).

number of accessory parameters N :

N := 2 + (p − 1)m2 −
p∑

ν=0

dimZ(Aν)

A0 := −
p∑

ν=1

Aν

 .

Z(Aν): centralizer of Aν. For example,

M =

λ1Il1
λ2Il2

λ3Il3

 ⇒ dimZ(M) = (l1)
2 + (l2)

2 + (l3)
2.
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Example. p = 2, m = 2 (Gauss’ hypergeometric equation)

N = 2 + (2 − 1) × 22 −
∑2

ν=0(1
2 + 12) = 2 + 4 − 6 = 0

: rigid (⇔ accessory parameter free)

Example. p = 3, m = 2

N = 2 + (3 − 1) × 22 −
∑3

ν=0(1
2 + 12) = 2 + 8 − 8 = 2.
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We can regard rigid Fuchsian systems as generalizations of the Gauss

hypergeometric equation.

How do we get all rigid Fuchsian systems?

←− Katz theory and Yokoyama theory.
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Katz theory

Katz introduced the operations, called addition and middle convolu-

tion, and he showed the theorem:

Theorem (Katz) . Every irreducible rigid Fuchsian system is ob-

tained from rank 1 Fuchsian system by a finite iteration of the two

operations.

We explain here the Katz’s operations which are reformulated by

Dettweiler and Reiter in terms of linear algebra.

Definition (addition) . For α = (α1, . . . , αp) ∈ Cp, an operation

A 7→ (A1 + α1Im, . . . , Ap + αpIm)

is called addition.
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Fix λ ∈ C.

We put a pm × pm matrix Gν as follows:

Gν =


Om . . . Om
... . . . ...

A1 . . . Aν + λIm . . . Ap
... . . . ...

Om . . . Om

 (ν = 1, . . . , p).

Definition (convolution) . The system (G1, . . . , Gp) is called convo-

lution with λ of A. We denote this system by cλ(A).
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Let K,Lλ be the linear subspaces of Cpm:

K :=

Ker(A1)
...

Ker(Ap)

 ,

Lλ := Ker(G1 + · · · + Gp).

K,Lλ are G1, . . . , Gp-invariant subspaces.

Let Ḡν be an endomorphism of Cpm/(K + Lλ) induced by Gν.

Definition (middle convolution) . We call the system (Ḡ1, . . . , Ḡp)

middle convolution with λ of A and denote by mcλ(A).
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Correspondence of solutions

Let Y be a solution of A = (A1, . . . , Ap).

addition∏
(x − tν)ανY : solution of (A1 + α1Im, . . . , Ap + αpIm).

convolution

Put F (x) :=


Y (x)
x−t1...
Y (x)
x−tp

. Then

∫
γ
(x − t)λF (t)dt: solution of cλ(A) = (G1, . . . , Gp).
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Yokoyama theory

Yokoyama introduced the operations, called extension and restriction

for Okubo systems, and he showed the theorem:

Theorem (Yokoyama) . Every irreducible rigid semisimple Okubo

system is obtained from rank 1 Okubo system by a finite iteration of

the two operations.

Here Okubo system means a system of linear differential equations of

the form:

(xIn − T )
dΨ

dx
= AΨ.

T is an n×n constant diagonal matrix, A is an n×n constant matrix.
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Yokoyama theory is a theory for Okubo systems.

On the other hand, Katz’s middle convolution is closely related to
transform a given equation into Okubo system. Thus the Okubo
system also plays an important role in Katz theory.

Then, it is natural to focus on the Okubo systems when we want
to generalize the theory by Katz and Yokoyama to deal with non-
Fuchsian systems.

Recently, Oshima gave a concrete relation between Katz’s middle
convolution and Yokoyama’s extension and showed the equivalence of
both algorithms.

In what follows, we mainly consider a generalization of the middle
convolution.
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Generalized Okubo system

A system of linear differential equations of the form

(xIn − T )
dΨ

dx
= AΨ (1)

is called an Okubo system.

T : n × n constant diagonal matrix, A : n × n constant matrix.

When T is of the form

T =

t1Il1 . . .
tpIlp

 ,

(1) has regular singularities at x = t1, . . . , tp and x = ∞.
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When the matrix T is not semisimple, the system (1) may have irreg-

ular singularities.

In the case when T is a Jordan matrix, non-semisimple, call (1) gen-

eralized Okubo system.

Example. T =

(
0 1
0 0

)
. (1) ⇐⇒

dΨ

dx
= (xI − T )−1AΨ

=

{
1

x2

(
0 1
0 0

)
A +

1

x
A

}
Ψ.
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We assume that the matrix A is semisimple and denote its non-zero

eigenvalues by −ρ1, . . . ,−ρm, namely, we put

A = −GRG−1, R = diag(ρ1, . . . , ρm,0, . . . ,0).

We represent the following (generalized) Okubo system

(xI − T )
dΨ

dx
= −GRG−1Ψ

as (T, R, G).
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Let Stab(M) be the stabilizer of M ∈ M(n, C), i.e.

Stab(M) = {g ∈ GL(n, C) | gM = Mg}.

For a Jordan matrix T and a diagonal matrix

R = diag(ρ1, . . . , ρm,0, . . . ,0), (2)

let O(T, R) be the following set of systems:

O(T, R) := {(T, R, G)}/ ∼
O

.

Here the equivalent relation ∼
O

is defined by

G ∼
O

hGg (h ∈ Stab(T ), g ∈ Stab(R)).
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We write the set of all generalized Okubo systems as

GO :=
∐
T,R

O(T, R),

where T runs over all Jordan matrix, including diagonal matrices, and

R runs over all diagonal matrices of the form (2).

Similarly, we denote the set of all Okubo systems, a subset of GO, by

O :=
∐
T,R

O(T, R)

where T runs over all diagonal matrices.
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Let Xp be the following set:

Xp := {(t1, . . . , tp) ∈ Cp | ti 6= tj (i 6= j)}.

We put Γ(m,p) and Γ∗
(m,p) as

Γ(m,p) = Xp × (Z≥0)
p × (C×)m,

Γ∗
(m,p) = Xp × (C×)m.

We regard the set Γ∗
(m,p) as a subset of Γ(m,p) through the inclusion

mapping

Γ∗
(m,p) ↪→ Γ(m,p)

(t1, . . . , tp, ρ1, . . . , ρm) 7→ (t1, . . . , tp,

p︷ ︸︸ ︷
0, . . . ,0, ρ1, . . . , ρm).
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For every element

γ = (t1, . . . , tp, r1, . . . , rp, ρ1, . . . , ρm) ∈ Γ(m,p),

we denote by R̃γ the m × m diagonal matrix

diag(ρ1, . . . , ρm).
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Then we define Eγ by

Eγ =

{
A(x) =

p∑
ν=1

rν∑
k=0

A(−k)
ν

(x − tν)k+1

∣∣∣∣∣
A(−k)

ν ∈ M(m, C), A(−rν)
ν 6= O, −

p∑
ν=1

A(0)
ν = R̃γ

} /
∼
Eγ

.

Here equivalent relation ∼
Eγ

is defined by

A(x) ∼
Eγ

gA(x)g−1 (g ∈ Stab(R̃γ)).
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We identify an element A(x) of Eγ with the system

dY

dx
= A(x)Y.

We put

E :=
∐

m,p∈Z≥1

∐
γ∈Γ(m,p)

Eγ,

F :=
∐

m,p∈Z≥1

∐
γ∈Γ∗

(m,p)

Eγ,

namely E is the set of systems of linear differential equations on P1

which have regular singularity at infinity, and F is the set of Fuchsian

systems on P1.
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Definition of π : GO → E

Let [T, R, G] be an arbitrary element of GO, that is, a system of the

form

(xI − T )
dΨ

dx
= −GRG−1Ψ. (3)

Here T is an n × n Jordan matrix (not necessarily diagonal).

We put R = diag(ρ1, . . . , ρm,0, . . . ,0).
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By changing the unknown function of (3) as Ψ = GΨ̃, we have

dΨ̃

dx
= −G−1(xI − T )−1GRΨ̃.

The coefficient of the right-hand side is rewritten into the following

form:

−G−1(xI − T )−1GR =
p∑

ν=1

rν∑
k=0

B
(−k)
ν

(x − tν)k+1
.

Here

B
(−k)
ν := −G−1J

(−k)
ν GR.

J
(−k)
ν denotes the coefficient matrix of 1/(x − tν)k+1 in (xI − T )−1.
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Since the last n−m columns of R are zero, the matrix B
(−k)
ν is of the

form

B
(−k)
ν =

A
(−k)
ν Om,n−m

X
(−k)
ν On−m,n−m

 ,

A
(−k)
ν being some m×m matrix and X

(−k)
ν some (n−m)×m matrix.

Starting from [T, R, G], we obtain

p∑
ν=1

rν∑
k=0

A
(−k)
ν

(x − tν)k+1
∈ E.
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The definition of π : GO → E is summarized as follows:

For [T, R, G] ∈ GO,

π(T, R, G) := the principal m × m part of(−G−1(xI − T )−1GR).

This is well-defined.
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Relation to the middle convolution

We investigate the relation between the map π|O : O → F and the

middle convolution.

Let F =

 p∑
ν=1

A
(0)
ν

x − tν

 be an element of F whose matrix size is m. Put

rankA
(0)
ν = lν. Then A

(0)
ν is factorized into

A
(0)
ν = BνCν,

where Bν is m × lν matrix, Cν is lν × m matrix, and

rankBν = rankCν = lν.

We put n = l1 + · · · + lp.
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We define the n × n matrices Tmin, Amin as follows:

Tmin =

t1Il1 . . .
tpIlp

 ,

Amin =

C1
...

Cp

 (B1 . . . Bp).

Proposition 1. The minimal size Okubo system in π−1(F ) uniquely

exists up to conjugate action of Stab(Tmin) and is given as follows:

(xI − Tmin)
dΨ

dx
= AminΨ.

In particular, π|O : O → F is surjective.
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Example. m = 2, p = 3

Eigenvalues of A
(0)
ν are 0, θν (ν = 1,2,3).

A
(0)
ν is parametrized as

A
(0)
ν =

1

2

aνbν + θν −a2
ν

b2ν − θ2
ν

a2
ν

−aνbν + θν


=

(
aν

aνbν−θν
aν

) (
aνbν + θν

2aν
−

aν

2

)
.
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Amin is given by

Amin =


a1b1+θ1

2a1
−a1

2
a2b2+θ2

2a2
−a2

2
a3b3+θ3

2a3
−a3

2


(

a1 a2 a3
a1b1−θ1

a1

a2b2−θ2
a2

a3b3−θ3
a3

)

=
1

2

2θ1 c12 c13
c21 2θ2 c23
c31 c32 2θ3

 ,

where

cij := ajbi − aibj + θi
aj

ai
+ θj

ai

aj
.
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The relation to the middle convolution is as follows.

Proposition 2. For any λ ∈ C, the middle convolution of

F =
p∑

ν=1

A
(0)
ν

x − tν
∈ F

with λ coincides with the image of the following system under π:

(xI − Tmin)
dΨ

dx
= (Amin + λI)Ψ.

28



Hence, the middle convolution is obtained by the following procedure:

1. Lift a system in F to O of the minimal size.

2. Shift the right-hand side with scalar matrix:

Tλ(T, R, G) = (T, R + λI, G).

3. Take an image of this in F by π.

O Tλ−−→ O
π|O

y yπ|O

F −−−→
mcλ

F
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Shift of the right-hand side of Okubo systems by a scalar matrix is

realized by the Euler transformation:

Ψ(x) 7→
∫

Ψ(t)(x − t)λdt.

Therefore we can say that the middle convolution is “Transform F

into Okubo system + Euler transform”.
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By taking the above consideration into account, we can define an

analogue of the middle convolution for non-Fuchsian systems by the

same procedure.

GO Tλ−−→ GO
π

y yπ

E −−−−→
“mcλ”

E

It is necessary to show the surjectivity of π so that this procedure

may work.
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Surjectivity of π

Let
p∑

ν=1

rν∑
k=0

A
(−k)
ν

(x − tν)k+1
be a size m element of E.

We put r̃ν := m(rν + 1), n :=
∑p

ν=1 r̃ν.
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Let Ãν be the following r̃ν × n matrix:

Ãν :=

(
Omrν,n

A
(−r1)
1 . . . A

(0)
1 . . . A

(−rp)
p . . . A

(0)
p

)
.

We put the matrices Ã, T , and P as follows:

Ã :=

Ã1
...

Ãp

 ,

T := Jr1+1(t1)
⊕m ⊕ · · · ⊕ Jrp+1(tp)

⊕m,

P := P(m,r1+1) ⊕ · · · ⊕ P(m,rp+1).
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Here Jk(a) (a ∈ C, k ∈ Z≥1) is the k × k Jordan block with eigenvalue

a, and P(i,j) is a permutation matrix

P(i,j) = (Ii ⊗ e1, Ii ⊗ e2, . . . , Ii ⊗ ej),

where e1, . . . , ej are unit vectors of Cj.
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We consider the generalized Okubo system

(xIn − T )
dΨ

dx
= (PÃP−1 + λIn)Ψ. (4)

Definition 1. We call the generalized Okubo system (4) convolution

of E with λ and denote it by cλ(E).

Theorem 3. For any element E ∈ E, c0(E) ∈ π−1(E). Therefore the

map π : GO → E is surjection.
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Remark 1. The assumption that E has at least one regular singular

point is not essential since, by a gauge transformation Y → (x−a)αY ,

we can add the term α
x−a to E.

Remark 2. When the corank of leading terms A
(−rν)
ν (ν = 1, . . . , p)

of E are all zero, the system c0(E) is the minimal size generalized

Okubo system in π−1(E).
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Examples of m.c. for non-Fuchsian systems

We give three examples of the middle convolution for non-Fuchsian

systems.
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Example. The system satisfied by 3F1:x −

0 1 0
0 0 0
0 0 0


 dΨ

dx
=

λ1
ρ1ρ2ρ3

λ2t 1

t 0 0
u 0 λ2

 Ψ

where u = λ1λ2 − ρ1ρ2 − ρ2ρ3 − ρ3ρ1 − ρ1ρ2ρ3
λ2

.

The Riemann scheme of this system is
x = 0 x = ∞︷ ︸︸ ︷
0 0
0 λ2
t λ1

ρ1
ρ2
ρ3

 .
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−−−→mcρ3
A

(−1)
1
x2 +

A
(0)
1
x (rank 2 system) where

A
(−1)
1 =

t

ρ1 − ρ2

(
λ2 + ρ1 λ2 + ρ2

−(λ2 + ρ1) −(λ2 + ρ2)

)
,

A
(0)
1 = −

(
ρ1 − ρ3 0

0 ρ2 − ρ3

)
.

The Riemann scheme is
x = 0 x = ∞︷ ︸︸ ︷

0 λ2 + ρ3
t λ1 + 2ρ3

ρ1 − ρ3
ρ2 − ρ3

 .
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−−−−−−−−−→
add−(λ2+ρ3)


x = 0 x = ∞︷ ︸︸ ︷

0 0
t λ1 − λ2 + ρ3

ρ1 + λ2
ρ2 + λ2

 .

−−−−−−→mcρ1+λ2
rank 1 system.
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Example. Fifth Painlevé equation

We consider the system of linear differential equations LV given by

the following Riemann scheme:
x = 0 x = 1 x = ∞

0
α3

︷ ︸︸ ︷
0 0
t α2 − α0

α0
α0 + α1 − 1

 .
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Then the system LV is written as follows:

dY

dx
=

 A
(−1)
1

(x − 1)2
+

A
(0)
1

x − 1
+

A
(0)
0

x

 Y,

A
(−1)
1 =

(
z1 + t −vz1

(z1 + t)/v −z1

)
, A

(0)
1 = −A

(0)
0 −

(
α0 0
0 α0 + α1 − 1

)
,

A
(0)
0 =

(
z0 + α3 −uz0

(z0 + α3)/u −z0

)
,

(5)
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(1 − α1)z0 = λ2(λ − 1)2µ2

+ {α0(λ − 1) − α2 − t}{(λ − 1)µ + α0}λ
+ {α0λ(λ − 1) − t}λµ + α3(α1 − 1),

(1 − α1)z1 = λ(λ − 1)3µ2

+ {2α0λ2 − (2α0 − α3 + t)λ − α3}
× {(λ − 1)µ + α0}

− α2
0λ(λ − 1) + (α0 + α1 − 1)t,

v =
λ − 1

λ

z0
z1

u.

The parameter λ is a position of the apparent singular point. The
holonomic deformation of (5) is governed by the fifth Painlevé equa-

tion PV.
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Proposition 4.The minimal size generalized Okubo system in π−1(LV)

is uniquely given as follows:

(xI3 − TV)
dΨ

dx
= CVΨ

where

TV =

1 1 0
0 1 0
0 0 0

 ,

CV =

α2 − α0 −1
t detA

(0)
1 (CV)13

t 0 (CV)23
(CV)31 (CV)32 α3

 ,
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(CV)23 = ((λ − 1)µ + α0)λ + α3,

(CV)31 = t − {(λ − 1)µ + α0}(λ − 1),

t(CV)32 = (α1 − 1)z1

+ (α0 + α1 − 1)(t − ((λ − 1)µ + α0)(λ − 1)),

(CV)13 =
1

t − {(λ − 1)µ + α0}(λ − 1)
×

{(α1 − 1)z0 − (((λ − 1)µ + α0)λ + α3)(CV)32

− α3(α0 + α3)}.
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The middle convolution of (5) with α0 is

dY

dx
=

 Ā
(−1)
1

(x − 1)2
+

Ā
(0)
1

x − 1
+

Ā
(0)
0

x

 Y,

Ā
(0)
0 =

(
z̄0 + α3 + α0 −ūz̄0

(z̄0 + α3 + α0)/ū −z̄0

)
,

Ā
(−1)
1 =

(
z̄1 + t −v̄z̄1

(z̄1 + t)/v̄ −z̄1

)
,

Ā
(0)
1 = −Ā

(0)
0 −

(
−α0 0
0 α1 − 1

)
,

(6)
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z̄0 =
α1 − 1

α0 + α1 − 1
z0, z̄1 =

α1 − 1

α0 + α1 − 1
z1,

v̄ =
λ + α0/µ − 1

λ + α0/µ

z0
z1

ū.

By comparing (5) and (6), we obtain the transformation

α0 7→ −α0, α1 7→ α1 + α0, α2 7→ α2, α3 7→ α3 + α0,

t 7→ t, λ 7→ λ +
α0

µ
, µ 7→ µ.
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Example. Fourth Painlevé equation

Next we consider the system of linear differential equations LIV given

by the following Riemann scheme:
x = 0 x = ∞︷ ︸︸ ︷

0 0 0
1
2 t α2 − α0

α0
α0 + α1 − 1

 .
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LIV is written as follows:

dY

dx
=

A
(−2)
0

x3
+

A
(−1)
0

x2
+

A
(0)
0

x

 Y,

A
(−2)
0 =

(
z + 1/2 −uz

(z + 1/2)/u −z

)
,

A
(−1)
0 =

(
a11 a12
a21 a22

)
,

A
(0)
0 = −

(
α0 0
0 α0 + α1 − 1

)
,

(7)
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2(1 − α1)z = (2λ3µ + 2α0λ2 − 2tλ − 1)(λµ + α0)

+ α0 + α1 − 1,

λa11 = − (z + 1/2) + λ3µ + α0λ2,

a12 = uz/λ,

a21 =
λ

uz
{a11(t − a11) − (α1 − 1)z

− (α0 + α1 − 1)/2},
a22 = t − a11.
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Proposition 5.The minimal size generalized Okubo system in π−1(LIV)

is uniquely given as follows:

(xI3 − TIV)
dΨ

dx
= CIVΨ. (8)

TIV =

0 1 0
0 0 1
0 0 0

 ,

CIV =

2(α1 − 1)z − α0 (CIV)12 (CIV)13
0 −2(α1 − 1)z + α2 (CIV)23
1
2 t 0

 ,
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(CIV)13 = 4(α1 − 1)λ{2λ(λµ + α0)
2 − µ}z,

(CIV)23 = − 4(α1 − 1)λ(λµ + α0)z,

(CIV)12 =
((−2(α1 − 1)z + α2)(CIV)13

(CIV)23

+ 2t(2(α1 − 1)z − α0).
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Remark 3. By means of Laplace transform

Ψ(x) =
∫

e−xzΦ(z)dz,

(8) transforms into

dΦ

dz
=

(
TIV −

CIV + I

z

)
Φ.

This system is essentially the linear equation associated with the

Noumi-Yamada system of type A
(1)
2 .
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The middle convolution of (7) with α0 is

dY

dx
=

Ā
(−2)
0

x3
+

Ā
(−1)
0

x2
+

Ā
(0)
0

x

 Y,

Ā
(−2)
0 =

(
z̄ + 1/2 −ūz̄

(z̄ + 1/2)/ū −z̄

)
,

Ā
(−1)
0 =

(
ā11 ā12
ā21 ā22

)
,

Ā
(0)
0 = −

(
−α0 0
0 α1 − 1

)
,

(9)
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z̄ =
α0 + α2

α2
z,

ā11 =
1

α2
{(α0 + α2)a11 − α0t} , ā12 =

ūz̄

λ + α0/µ
,

ā21 =
λ + α0/µ

ūz̄

{
ā11(t − ā11) + α2z̄ +

α0 + α2

2

}
,

ā22 = t − ā11.

By comparing (7) and (9), we have

α0 7→ −α0, α1 7→ α1 + α0, α2 7→ α2,

t 7→ t, λ 7→ λ +
α0

µ
, µ 7→ µ.
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